Acoustic hole filling for sparse enrollment data using a cohort universal corpus for speaker recognition.

نویسندگان

  • Jun-Won Suh
  • John H L Hansen
چکیده

In this study, the problem of sparse enrollment data for in-set versus out-of-set speaker recognition is addressed. The challenge here is that both the training speaker data (5 s) and test material (2~6 s) is of limited test duration. The limited enrollment data result in a sparse acoustic model space for the desired speaker model. The focus of this study is on filling these acoustic holes by harvesting neighbor speaker information to leverage overall system performance. Acoustically similar speakers are selected from a separate available corpus via three different methods for speaker similarity measurement. The selected data from these similar acoustic speakers are exploited to fill the lack of phone coverage caused by the original sparse enrollment data. The proposed speaker modeling process mimics the naturally distributed acoustic space for conversational speech. The Gaussian mixture model (GMM) tagging process allows simulated natural conversation speech to be included for in-set speaker modeling, which maintains the original system requirement of text independent speaker recognition. A human listener evaluation is also performed to compare machine versus human speaker recognition performance, with machine performance of 95% compared to 72.2% accuracy for human in-set/out-of-set performance. Results show that for extreme sparse train/reference audio streams, human speaker recognition is not nearly as reliable as machine based speaker recognition. The proposed acoustic hole filling solution (MRNC) produces an averaging 7.42% relative improvement over a GMM-Cohort UBM baseline and a 19% relative improvement over the Eigenvoice baseline using the FISHER corpus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filling acoustic holes through leveraged uncorellated GMMs for in-set/out-of-set speaker recognition

In this study, the problem of in-set versus out-of-set speaker recognition for limited train/test data is addressed. Since enrollment data is so limited (5 sec), acoustic holes in the speaker phoneme space from training tokens will exist and must be filled. To achieve this, a cohort speaker selection process is developed that possess similar acoustic characteristics. The resulting GMM from comm...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Acoustic factor analysis based universal background model for robust speaker verification in noise

The Universal Background Model (UBM) is known as a speaker independent Gaussian Mixture Model (GMM) trained on a large speech corpus containing many speakers’ recordings in various conditions. When noisy test data is involved, UBM trained on clean data is generally not optimal. Using noisy data for UBM training, however, creates a bias towards the specific development noise samples resulting in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 131 2  شماره 

صفحات  -

تاریخ انتشار 2012